Skip to content
Qsalto
This might take a while
\(M\)
\(M'\)
\(\tilde{M}\)
\(T'\)
\(T'^{-1}\)
\(\tilde{T}\)
\(\tilde{T}^{-1}\)
\(\tilde{T}'\)
\(\tilde{T}'^{-1}\)
SLD
\(\mathbf{a}[\rho]\)
dual SLD
\(\mathbf{b}[\rho]\)
APD
\(\mathbf{a'}[\rho]\)
dual APD
\(\mathbf{b'}[\rho]\)
TPD
\(\mathbf{\tilde{a}}[\rho]\)
dual TPD
\(\mathbf{\tilde{b}}[\rho]\)

$$ a_j[\rho] = \frac{1}{2^n} \sum_{|P|=j} \mathrm{Tr}[\rho P]^2 $$
$$ b_j[\rho] = \frac{1}{2^n} \sum_{|P|=j} \mathrm{Tr}[\rho P\rho P] $$
$$ a'_j[\rho] = \frac{1}{\binom{n}{j}} \sum_{\substack{S\subseteq \{1,\dots,n\}\\|S|=j}} \mathrm{Tr}[\rho_S^2] $$
$$ b'_j[\rho] = \frac{1}{\binom{n}{j}} \sum_{\substack{S\subseteq \{1,\dots,n\}\\|S|=n-j}} \mathrm{Tr}[\rho_S^2] $$
$$ a''_j[\rho] = \frac{1}{2^n} \sum_{|P|=j} \mathrm{Tr}[\rho P \tilde{\rho} P] $$
$$ b''_j[\rho] = \frac{(-1)^{(n-j)}}{2^n} \sum_{|P|=j} \mathrm{Tr}[\rho P \tilde{\rho} P] $$